skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pilato, R N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. We present details on a new measurement of the muon magnetic anomaly, a μ = ( g μ 2 ) / 2 . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses 3.1 GeV / c polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of a μ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure a μ = 116 592 057 ( 25 ) × 10 11 (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield a μ ( FNAL ) = 116 592 055 ( 24 ) × 10 11 (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is a μ ( exp ) = 116 592 059 ( 22 ) × 10 11 (0.19 ppm). Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ B c + → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ B c + →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ R ψ 2 S χ c 1 3872 = B B c + χ c 1 3872 π + B B c + ψ 2 S π + × B χ c 1 3872 J / ψ π + π B ψ 2 S J / ψ π + π < 0.05 0.06 , is set at the 90 (95)% confidence level. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. We present a new measurement of the positive muon magnetic anomaly, 𝑎𝜇≡(𝑔𝜇−2)/2, from the Fermilab Muon 𝑔−2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, 𝜔𝑝, and of the anomalous precession frequency corrected for beam dynamics effects, 𝜔𝑎. From the ratio 𝜔𝑎/𝜔𝑝, together with precisely determined external parameters, we determine 𝑎𝜇=116 592 057⁢(25)×10−11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain 𝑎𝜇⁡(FNAL)=116 592 055⁢(24)×10−11 (0.20 ppm). The new experimental world average is 𝑎𝜇⁡(exp)=116 592 059⁢(22)×10−11 (0.19 ppm), which represents a factor of 2 improvement in precision. 
    more » « less
  5. A search for C P violation in Λ b 0 p K and Λ b 0 p π decays is presented using the full Run 1 and Run 2 data samples of p p collisions collected with the LHCb detector, corresponding to an integrated luminosity of 9 fb 1 at center-of-mass energies of 7, 8, and 13 TeV. For the Run 2 data sample, the C P -violating asymmetries are measured to be A C P p K = ( 1.4 ± 0.7 ± 0.4 ) % and A C P p π = ( 0.4 ± 0.9 ± 0.4 ) % , where the first uncertainty is statistical and the second is systematic. Following significant improvements in the evaluation of systematic uncertainties compared to the previous LHCb measurement, the Run 1 dataset is reanalyzed to update the corresponding results. When combining the Run 2 and updated Run 1 measurements, the final results are found to be A C P p K = ( 1.1 ± 0.7 ± 0.4 ) % and A C P p π = ( 0.2 ± 0.8 ± 0.4 ) % , constituting the most precise measurements of these asymmetries to date. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. A study is presented of B + K S 0 K π + K + and B + K S 0 K + π K + decays based on the analysis of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb 1 . The K S 0 K π invariant-mass distributions of both B + decay modes show, in the m ( K S 0 K π ) < 1.85 GeV mass region, large activity which is resolved using an amplitude analysis. A simple model, where J P C amplitudes are described by multiple Breit-Wigner functions with appropriate angular distributions, provides a good description of the experimental data. In this approach a complex mixture of J P C = 0 + , 1 + + and 1 + amplitudes is observed that is dominated by η ( 1405 ) , η ( 1470 ) , η ( 1760 ) , f 1 ( 1285 ) , f 1 ( 1420 ) and h 1 ( 1405 ) resonances. The K S 0 K π Dalitz plots are dominated by asymmetric crossing K * K ¯ bands which are different for the two B + decay modes. This is due to a different interference pattern between the 1 + + and 1 + amplitudes in the two channels. Branching fractions are measured for each resonant contribution. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. The first test of lepton flavor universality between muons and electrons using B + K + π + π + ( = e , μ ) decays is presented. The measurement is performed with data from proton-proton collisions collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb 1 . The ratio of branching fractions between B + K + π + π e + e and B + K + π + π μ + μ decays is measured in the dilepton invariant-mass-squared range 1.1 < q 2 < 7.0 GeV 2 / c 4 and is found to be R K π π 1 = 1.3 1 0.17 + 0.18 ( stat ) 0.09 + 0.12 ( syst ) , in agreement with the standard model prediction. The first observation of the B + K + π + π e + e decay is also reported. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. A search for D 0 meson decays to the π + π e + e and K + K e + e final states is reported using a sample of proton-proton collisions collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb 1 . The decay D 0 π + π e + e is observed for the first time when requiring that the two electrons are consistent with coming from the decay of a ϕ or ρ 0 / ω meson. The corresponding branching fractions are measured relative to the D 0 K π [ e + e ] ρ 0 / ω decay, where the two electrons are consistent with coming from the decay of a ρ 0 or ω meson. No evidence is found for the D 0 K + K e + e decay and world-best limits are set on its branching fraction. The results are compared to, and found to be consistent with, the branching fractions of the D 0 π + π μ + μ and D 0 K + K μ + μ decays recently measured by LHCb and confirm lepton universality at the current precision. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  9. The first measurement of the C P asymmetry of the decay rate ( A C P ) and the C P average ( Σ A FB ) and C P asymmetry ( Δ A FB ) of the forward-backward asymmetry in the muon system of Λ c + p μ + μ decays is reported. The measurement is performed using a data sample of proton-proton collisions, recorded by the LHCb experiment from 2016 to 2018 at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 5.4 fb 1 . The asymmetries are measured in two regions of dimuon mass near the  ϕ -meson mass peak. The dimuon-mass integrated results are A C P = ( 1.1 ± 4.0 ± 0.5 ) % , Σ A FB = ( 3.9 ± 4.0 ± 0.6 ) % , Δ A FB = ( 3.1 ± 4.0 ± 0.4 ) % , where the first uncertainty is statistical and the second systematic. The results are consistent with the conservation of C P symmetry and the Standard Model expectations. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  10. A<sc>bstract</sc> An analysis of the flavour oscillations of the charmed neutral meson is presented. The ratio ofD0→K+πandD0→Kπ+decay rates is measured as a function of the decay time of theD0meson and compared with the charge-conjugated system to search for charge-parity violation. The meson flavour at production is double-tagged by the charges of the muon and pion in the preceding$$ \overline{B}\to {D}^{\ast }{(2010)}^{+}{\mu}^{-}X $$ B ¯ D 2010 + μ X andD(2010)+ → D0π+decays, respectively. These decays are selected from proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 5.4 fb−1. The flavour oscillation parameters, relating to the differences in mass and width of the mass eigenstates, are found to bey′ = (5.8 ± 1.6) × 10−3and (x′)2= (0.0 ± 1.2) × 10−4. No evidence for charge-parity violation is seen either in the flavour oscillations or in the decay, where the direct charge-parity asymmetry is measured to beAD= (2.3 ± 1.7) %. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026